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Involutive automorphisms of the class of affine Kac-Moody 
algebras BF) 

S P Clarke and J F Cornwell 
School of Physics and Astronomy. University of St Andrews, North Haugh. St Andrews, Fife, 
KY16 9SS. UK 

Received 12 July 1993 

Abstract. All the conjugacy classes of involutive automorphisms of the affine KaoMoody 
algebns Bj” for I > I are determined using the matrix formulation of automorphisms of an 
affine Kac-Moody algebra. 

1. lntroduction 

1.1. Preliminaries 

In a previous paper (Cornwell [I]), the important role played by the automorphism groups 
of an affine Kac-Moody algebra was discussed, and a matrix formulation was developed for 
dealing with general automorphisms of affine untwisted Kac-Moody algebras. Subsequently 
in Cornwell 12-41, this method was used to investigate the involutive automorphisms of the 
algebras AY), taking all positive integer values. In this paper this analysis is continued 
for the algebras BY’ for all integer values of e .  Here we will retain the notations and 
conventions used in those papers (Cornwell [ I 4 1  which will be referred to as papers I-IV 
respectively), with the convention that (1.6) refers to the equation numbered (6) in paper I, 
and so on, whereas (6) is the sixth labelled equation of the present paper. 

In addition to the notation already developed, it is helpful to introduce some 
new notations, conventions and terminology, for ease of understanding, as well as for 
conciseness. 

(1) We recall that in the matrix formulation, use was made of matrices U(r) , where 
a typical U(r) is such that U ( t )  i s  invertible. and both U@) and its inverse are composed 
entirely of Laurent polynomials. Such a matrix will subsequently be referred to as a‘laurent 
polynomial matrix’ or simply as a ‘Laumnt matrix’. 

(2) As an analogy to the notation ‘diag(a, . . . , z ] ’ ,  we define the expression ‘offdiag’ 
for the minor diagonal case. For example. 

offdiag(a,b,c] = 0 b 0 . (: K) 
Thus, in the ‘offdiag’ term we have defined, the first component is to be interpreted as the 
top right entry of the matrix. 
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(3) Similarly, ‘dsum’ indicates a direct sum, so, for example, 

dsum(a, b , .  . . , y , z )  

where a,b,y,z are all square submatrices. 
(4) We define (28 t 1) x (2 + 1) matrices xj and e,,k where j ,  k take integer values 

from 1, . . , , e. X, has just two non-zero entries, the j t h  diagonal entry which is 1 and the 
(21 + 2 - j ) th  diagonal entry which ‘is -1 .  e,,t has just one non-zero entry (the ( j ,  k)th) 
which is 1. 

1.2. The Kac-Moody algebra BY’ 

In this paper we are concerned ultimately with the Kac-Moody algebra BI”. In particular, 
we aim to use the matrix formulation to obtain conjugacy class representatives from 
each class of involutive automorphisms. The generalized Cartan matrix for Bp’is the 
(1  + l)x(e+ 1) matrix A, where 

0 - I 8  0 ... (0” 2 -1 0 .. ’  0 0 0 

A =  

-1 - 1  2 -1 , . .  0 0 0 
0 0 -1 2 , . ’  0 0 0  

. .  , . .  

1 
2(2! - 1) 

B =  
. .  

-1 2 - I  

0 2 -1 0 . . .  

0 0 -1 2 ... 

0 0 0 0 . . . 2 - 1 0  
0 0 0 0 ’ . ’  
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1.3. The Lie algebra Be 

BE is not only the complexification of so(2Z+ I ) ,  it is also the complexification of so(p, 9) 
where p + q = 2& + 1. In particular, consider the algebra so(t + 1. e). This may be defined 
to be the set of real traceless ( 2 t t l )  by (2et1) matrices a such that 

L g + g a = O  (6) 

where g is a diagonal matrix with 
use a realization of Bp given by 

+ 1 enhies I and & entries - 1. With this in mind, we 

r (ha; )  = {2 ( t  - I ) ) - l ( X C j )  - X ( j  + 1)) 

l?(ha;) = [2(2t - l))-'X(t) 

for 1 < j < & - 1 (7) 

(8) 

(9) = -t2(Ze - 1))- I12 (e,+l,j +eu+z-j.ze+l-j) for j = 1,. . .,&. 

With the above representation, (6) holds with 

g = offdiagtl, -1, . . . , -1, 1 ) .  (10) 

(that is, g is an off-diagonal matrix whose entries are alternately 1 and - 1 ,  with the first 
and last being 1). For example if e = 3 then 

(11) 

The representation r that we have chosen is irreducible, finite-dimensional and faithful, 

g = offdiagtl, - 1 ,  1 ,  1, -1, 1)  

thus the two 'middle' entries on the minor diagonal are the same. 

thus fulfilling the requirements of the matrix formulation. In addition, we have that - 
r = -grg-' (12) 

which means that the chosen representation is equivalent to its contragredient representation. 
This makes analysis much simpler, since the type 1 b automorphisms coincide with the type 
la automorphisms, and the type 2b automorphisms coincide with the type 2a automorphism. 
The Dynkin index of the above is given by 

113) y = { 2 & - 1 ] - .  I 

1.4. Notes on the matrix formulation 

Consider an automorphism specified by (U@), U ,  6 ], For any member of the Kac-Moody 
algebra it  follows that 

L(ut)g + ga(ur) = 0 (14) 

and 

L(ut-')g + ga(ut-I) = o (15) 

where a(t) is the 'matrix part' of the element, as defined in the general theory. For the 
subsequent analysis to work, we need a way of finding out whether 

i ' g  + ga' = 0 (16) 
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where a' is defined by the following: 

a' = U(t)a(ut)U(r)- '  ~ 

a' = U(f)a(ur-')U(f);' 

S P Clarke and J F Cornwell 

~ 

for type l a  automorphisms 

for type 2a automorphisms. 
(17) 

This requirement is a consequence of b e  effect of type l a  and type 2a automorphisms upon 
the 'matrix part' of an arbitrary algebra element. It is easily shown that condition (16) holds 
if and only if 

where f ( f )  is some function of f .  Given that U(r) is assumed to be a Lauren1 matrix, we 
may assume that 

~ 

detU(r) = orra (19) 

o[ being some non-zero complex number, and being some integer. Then, if we take 
determinants of both sides of (17) above, we obtain the conclusion that f ( t )  = atb, where 
a is some non-zero complex number,,and b is some even integer. 

Jn the subsequent sections we are going to investigate the involutive automorphisms. 
These sections will be as follows: section 2 will contain a study of the Weyl group of 
Be, which is the group of rotations of roots of Be. Section 3 contains a list of involutive 
automorphisms corresponding to each'of the root-transformations given in section 2. (Every 
involutive automorphism of 5:') is conjugate to at least one of the automorphisms in 
this list.) Sections 4-7 give more de/ailed investigations of the conjugacy classes of the 
involutive automorphisms, whilst section 7 contains a summary of the results, including one 
representative for each conjugacy class identified in the analysis. 

2. The Weyl group of Bf 

It was shown in the earlier papers that the only structural knowledge one needs is some 
familiarity with the group R of the collesponding simple Lie algebra, where R is the group 
of 'rotations' or root-preserving transformations of the simple Lie algebra, which in this 
case is Bp. This stems from the fact that every conjugacy class of involutive automorphisms 
of the Kac-Moody algebra contains at least one Cartan-preserving automorphism, which 
induces, in turn, an involutive rotation ro of Bt. 

For the algebra Bp, the group R coincides with W ,  the Weyl group of Bt. Thus, we 
require one representative for each conjugacy~ class of involutions in W ,  Since all Weyl 
groups are also Coxeter groups, we c q  make use of an algorithm developed by Richardson 
151 to obtain such representatives. In this section, we shall give a list of rotations obtained 
in this way. The algorithm, which is easy to apply, works by finding subsets of S, the index 
set { 1,2, , . . , e), that satisfy the '(-I)-condition', and then determining the W-equivalence 
classes of such subsets of the index set. 

The number of conjugacy classes of involutions in W does, of course, vary with e. 
Fortunately, there are a number of general patterns that allow us to give an exhaustive and 
succinct list of class representatives. For any value of e. the representatives fall naturally 
into eight 'families', each of which contains one or more members. For those families that 
contain more than one member, the members all have the same overall form but incorporate 
one or more integral parameters. In each such case, it is to be understood that the parameters 

I 
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take all permitted values, thus obtaining a full set of conjugacy class representatives. We 
shall illustrate this as we list the representatives. The numbers 1-8 in the list below refer 
to the eight 'families'. 

Involutive automorphism of B, (1) 

(1) This consists only of one member (the identity root-transformation ro) where 

ro(a") I = a; for 1 < j < e .  (20) 

ro(a?) I = -a? I for 1 < j < e  (21) 

(2) Here again, we have just one rotation and in this case it is specified by 

(3) In this case the general form of TO is given by 

Te(a?) I =ay for 1 < j < q - 2  

r0(a;-[) = a;-[ + 2(a; + .  . . +a;) (22) 
T y a ; )  = -a; for q < k < e .  

In (22), the integer q is assumed to take values 2 < q < e inclusive. In the special case 
that q = 2, (22) reduces to 

(4) In this case the most general ro is given by 

ro(aP) = -a? 

r"(a;) = a;-, f a; +a;+, 

for j odd; 1 < j < q 

for k even; 2 < k < q - 1 

I I 

(24) 
= a; +a;+[ 

rya;)  = a; for q + 2  < m < e .  
In (24), the parameter q is allowed to take all odd values such that 1 < 1 < e .  Also, for 
the special case q = 1 ,  (24) simplifies to 

rya;)  = -a; 
To@') = up +a; 
ra(a;) = a; for 2 < m < e 

(5) In this case, we have one parameter q, and 5' is such that 

In (26), q is restricted to integer values such that 1 < q c e, and also such that (e - q )  is 
even. 



136 S P Clarke and J F Cornwell 

! 
(6) In this case, ro is specified by 

r y o r P )  = -UP for 1 < j  < t ; j  odd J J 

ro(a;) = a;-] + a; + a;+, 
rO(O1;-,) = a;-% + a;-i + 2a;. 

for I < k < e - 2 

, 
(7) Here the most general transformation is such that 

ro(aP) = -a? 

ro(a;) = a;-, +a; +a;+, 

rn(a;-l) = + + 2(a; + . .. + a;) 
ro(a;) = -aa m 

where 1 < q < e - 1 and q is odd. 

r ,  with ro given by 

for 1 < j < q - 2; j is odd 

for 2 < k < q + 3; k is even 
J I 

(28) 

1 
~ f o r q  < m  < e  ~ 

(8) The final 'family' of transformations, depends upon two integer parameters q and 

ro(aP) = -a? 

ro($) = a;-l +a; +'a;+l 

for 1 < j < q;  j is odd 

for 1 c k -= q ;  k is even 
I J J 

r"(a;,,, =a; +a;,, 

5yLY;-,) = a;-l + 2 ( 4  + ,  . . +a;) 

(29) 
7yL-r;) =a; for q + 2  < m < r - 2 

r"(a;) = -a," for r < n < e .  

3. Listing of involutive automorphisms 

3.1. Plan of the section 

In this section we will give a list  of^ involutive automorphisms of Br) to  which all other 
involutive automorphisms of Br'are conjugate. This list will come in three parts over 
the next three subsections. In particular, subsection 2 will give a list of type la  involutive 
automorphisms with U = 1 to which all other such automorphisms are conjugate. Subsection 
3 will do the same for the type l a  involutive automorphisms with U = -1 and subsection 
4 will do this for the type 2a involutive automorphisms with U = 1. 

In general, the listing will consist of various matrices for each of the families of root 
transformations given in section 2. Most of these will contain quantities such as Aj and 
p j .  Unless stated otherwise, these should be interpreted as being arbitrary with AJ taking 
some non-zero complex value, and pjLj taking some integer value. "bus, for each matrix so 
defined, we specify a set (possibly infinite) of automorphisms of the form 

~ 

~ 

~ = l u ( 0 ~ ~ * 6 1  (30) 

w,here the complex numbers 6 are essentially arbitrary, and we shall use the term 
for all automorphisms. although th+ do not necessarily refer to the same value. We 
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recall that the automorphism 4, as given in (30), is the same automorphism as $‘, where 
6’ = (Ar”U(r), U. (1, This means that we may scale each matrix U(?) by an arbitrary factor 
Alp. In practice. we do this such that the ( e  4- 1)th diagonal element of U(() is 1. This 
makes subsequent analysis much simpler. In order to display the listings in a simple and 
compact form we shall define some submatrices. Firstly, define Lj and L; (where j is an 
integer with I Q j < e )  by 

M j  and M; are defined by 

Similarly N, and Ni are given by 

Furthermore, we define cj,k and Cj,k by 
Cj,k = diag(AJP~. A,+lr@l*I,. . . , Akt”*] 

c:,k = diag(h;]t-@k, A;!lt-@b-c, , , . , A:’t-flj) I 

(37) 
(38) 

where, in (37) and (38), we have that 

A; = 1 for j < m < k .  (39) 

P m  = O  for j < m < k (40) 

We define C,”,k and C2k to be of the form given for Cl,k and C(,k , but where 

which we will describe as the f-independent forms of c j ,k  and Cj,k respectively. E,, E;, 
E,” and E;” may be defined as Cl,, , C ; , j ,  C;,j and C 4  respectively. 

Similarly, we define D, and D,”, with Dj being described by 

Dj = diag(Ajt@l,, . . , Att’’‘, 1, A;lt-”’, , , . , A:’t-”j) I 

Fj = offdiag(Ajt”j,. . . , her@‘, 1, A;’rPf,. . . , A,:lt-@~) 

(41) 
with D,” being the ‘r-independent form’ of Dj in the sense explained above for CTSk I 

Finally, we define Fj,F; and F,”. The basic form of Fj is given by 

(42) 
with F; being the r-independent form of this. F; is as given in (42) but is such that all 
powers off are even, as opposed to the ?-independent form where they are all zero. 

The usage of the submatrices that we have just defined will now be indicated. If k- j is 
a positive even integer then by an expression such as ‘L,, . . . , Lk’, we mean the expression 
dsum{L,, Lj+z,. .. , Lt-2, Lk) and not the expression dsum{L,, L,+I,. .., 4-1 ,  Lk). (This 
merely reflects the fact that L, is a 2 x 2  square submatrix.) We make the same interpretation 
for all such expressions involving the 2 x 2 submatrices. 
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3.2. Involutive automorphisms of type l a  with U = I 
In this subsection we list the U ( t )  , such that the corresponding type l a  automorphisms 
with U = 1 form a set of involutive aptomorphisms to which all other type l a  involutive 
automorphisms with U = I must be conjugate. We do this by working through each of the 
eight 'families' of root transformations that were listed in the previous section and giving 
the most general form of U(?) for each of them, thus ensuring that no automorphisms are 
overlooked. (The numbers 1-8 below refer to the 'families' listed in section 2.) 

S P Clarke and 3 F Cornwell 
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I 
(1) U ( ? )  = DY (43) 

(2) U ( t )  = FI (44) 

(4) (46) 

(6) (48) 

(7) (49) 

(8) U(?) = dsum1L1, . . . I  Lp, C;+~.,-, IF ,3  C;+2,r-l ', C:+z,,-l , L;, . . . I L',). (50) 

(3) U ( [ )  =dsum~E;-,.F,.Eb"_,), (45) 

(5) U(#)  = dsum{E;-,, L,, ..., LL-2 .  Fe, . . , L;, E:_,') (47) 

U(r )  = dsum(L,, , , . , b. D;+2, Lb,. . . , Li) 

U(#)  = dsum{Ll,. , . , Le-2, F:, L;-2,. . . , L',] 
U(t) = dsum(L1.. . . ,b-2, F,,, LL-,, . . . , L',] 

3.3. Involutive automorphism of type l a  with U = - I 
This subsection will follow on in much the same fashion as the previous one. 
(1) U ( t )  = DY 
(2) U@)  = F; 

(3) 

(4) 

U(t) = dsum{E;-,, F;, Eb"_,l' 

U ( t )  = dsum{MI,. , . , M,, D&, M;, . . . , Mi] 
I 

We proceed in the same manner as the test of this section, namely by working through each 
of the eight families of root transformations. 
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4. Simplification of the forms of U(t) 

In the previous section we listed a number of matrices U ( t ) ,  with the intention of studying 
the automorphisms corresponding to them and, in particular, of determining the conjugacy 
classes of the involutive automorphisms within the group of all automorphisms of the 
algebra. In this section we will show that there is a subset of the automorphisms given in 
section 3, such that all of the other involutive automorphisms are conjugate to the members 
of this subset. 

(i) Consider a matrix U( t )  which is of the form 

U ( t )  = dsum{H, Lj ,  H', Lj', H"] (67) 

where H, H' and H" are arbitrary square matrices, and H and H" are of the same dimension, 
namely j - 1. Then, define U'@)  to be the matrix such that 

U'( t )  = dsum{H, W, H', -w, H"] (68) 

where w =diag{l, -1) is 2 x 2. We shall now demonstrate that all type la automorphisms 
[U(t ) ,  U ,  t ) ,  where U( t )  is as given in equation (67) are conjugate to the type la involutive 
automorphism [U ' ( t ) ,  U. c]. With this in mind, define ~ ( t )  by 

It is easy ta show that 

which proves the assertion we have just made. 

and Lj. With V ( t )  as defined in (69) we have 
Similarly, suppose that U(t )  i s  as given in (67) but contains M, and M; instead of Lj 

v(t)U(t)v(-t)-l  = U'@) (73) 

which means that all of the type l a  automorphisms (U(t). - I ,  t ] ,  where U( t )  is of the form 
(67) (but with L, replaced by Mj), are conjugate to the type la automorphism {U'@),  -1, I ] .  
Similarly, we may replace Lj in (67) by Nj and infer that all oi the type 2a automorphisms 
of the form [U(t) .  I ,  t )  are conjugate to the type 2a automorphism given by [U'(t), 1, (1. 
This simplifies matters greatly. 

(ii) Consider now U( t )  given by 

U(t)  = dsum{H, cj,k , H, C;,k , H"] (73) 

where H and H" are arbitrary ( j  - I )  x ( j  - I )  matrices and H' is an arbitrary square matrix 
of dimension 2t  - 2k t 1. Define U' ( t )  to be 

(75) 

where, in ( 7 3 ,  w is identical to C,,k except that two of its diagonal elements (h,tPm 
and Xn+) have been interchanged. The matrix W' is obtained from Cj,k by performing 

U ' ( t )  = dsum[H, W, H'. w', H'I 
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the 'same' interchange of index sets so that h;'t-'- and h;'r-"" are to be exchanged. 
Then, for two automorphisms of the same type. (U@), U ,  61 and (U'(r), U. 6) are conjugate. 
This means that the order of the eleme,nts in C,,k is essentially arbitrary, provided that we 
perform the appropriate permutation on  the elements of C;,k at the same time. We will 
now demonstrate this. 

There are two possible cases. In h e  first m - n is even, which means that there are 
an odd number of elements between AGP- and h,f'". Similarly for A;'"'" and A;'P". 
Define a matrix v(r) (which is t-independent) by 

1 
0 

S P Clarke and J F Cornwell 

if a # A, n ,  2 e +  2 - m, 2e + 2 - n 
if a = m,n ,  2 e +  2 -m. 2 e +  2 - n  

(76) 
if a= m, b = n 

1 U,. = 

1 i f , a  = 2e + 2 -  m, b = 2 e + 2  - n I '  ! 

U*b =ub, = 

with all other entries being zero. Then~Ggv = g. and 

vU(t)v-' = U'(?) ~ (77) , 
This proves our assertion when m - n is even. Now suppose that m - n is odd, and define 
a t-independent v by the following: 

&l. = 
i 
0 

if a + A. n ,  2e + 2 - m, 2e + 2 - n 
if a = 7, n ,  2e + 2 - m. 2e + 2 - n 

(78) 
i f ' a  = m ,  b = n 

~~~~~ ~ ~~ 

I 
Uab = uba = [ A %,a = 2e + 2 ~ -  m. b = 2e + 2 - n 

with all other entries being zero. Then'Gggv = -g, and 
I 

vU(t)v-' = u'(t) (79) 

where U'@) is as defined in (75). $is proves our assertion when m - n is some odd 
integer. Clearly, repeated application of the above argument shows that the position of such 
interchanged diagonal elements is arbi$ary. 

(iii) Now, suppose that in (74) we were to replace U(?) with the matrix U(t) given by 
the following: 

U(t) = 0 Fj 0 . (80) 

We may interchange the elements A m r b  and A n t "  of F,. and the elements h;'r-'. and 
h;'t-"" of F, using precisely the same techniques as were explained above. Hence, we may 
alter the index set of the off-diagonal elements arbitrarily, as we may do for the diagonal 
elements. 

(iv) Let U(r) be as given in (80). , We shall show here that it is possible to assume 
without loss of generality that 

hk = I for j < k < e.  (81) 

Let U'@) be obtained from U(t) by setting hk = I ,  where j < k < e ,  and let s be the 
r-independent matrix 

s = d s u m ( l j - 1 , ~ . 1 , - ~ )  (82)  

(1 1 3 ! 
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, . , Aj-'/'). Then 

sgs = g su(t)'s-' = U(t) (83) 

where x = diag(hj'/*, . . . , At1/', 1, 

implying that (U(r), U, 51 is conjugate to [U(?)', U .  c). 
(v) In the previous paragraph we dealt with the parameters hk that occur in the 

submatrices Fj .  In this subsection we are going to look at the integer variables f l k  in 
the same submatrices. In particular, if (U(?), f l ,  6) is a type la  automorphism, then we 
may assume 

0 if pk is even 
f lk = [ 1 if f l k  iS odd (84) 

that is, only the parity of pk is important, and not the absolute value thereof. (We are 
concerned here only with type la automorphisms. This is because submamces F, occuring 
in section 3.4 are all of the form F;, for which all of the integer parameters are already 
zero.) It is assumed that U(?) is still of the form given by (80). 

We define quantities pk according to the prescription 

0 if p~ is even 
pk = I 1 if pk is odd 

where j < k 4 e. Define fhe matrix U'(t) by 

U'(?) = dsum{H, w', H") 

Define ~ ( f )  by 

w' = offdiag[tpj,. . . , t h ,  1, t - P c , ,  , . , t-pj] . (86) 

~ ( t )  =dsum(l,-,.x(t), lj-l) 
(87) 

~ ( t )  = diag(t(s-Pi)/z, , , , , t(!J!-Ot)/z, 1, t ( f l r P t ) / 2 ,  , , , , t ( ! J , - P , ) / Z ]  , 

Then S&S(t) = g. If (U'@), 1, (1 is a type l a  automorphism, then we also have that 

s(t)U'(t)s(r)- '  = U(t) (88) 

where U(?) is as given in (go), but with h k  = 1 for j < k < e. The previous subsection 
tells us that is arbitrary anyway. Also, with U"(r) defined as 

U"(?) = dsum{H, w", H"] 

w" = offdiag((-l)"~*. ... , (-l)p</', I .  ( -I)"/ /* ,  ., ., (-l)fiJ[') 
(89) 

and S(t )  as in (87) we have that 

s(t)u"(f)s(-t)-' = U(?) (90) 

where u(t) is as given by (go), but with hk = 1 fork such that j < k 4 e. 
(vi) Let (U(?). 1, t ]  be a type 2a automorphism, where U ( t )  is given by 

U(r) = dsum{H, Cj,, H', C;,k, H"] (91) 
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where H, H' are square and of dimension j -  1, and H" is square and of dimension 2t-2k+ 1. 
Let p, be as defined in (85). Then one can assume without loss of generality that 

S P Clarke and J F Cornwell 

I 

p c , = p ,  f o r j < ) n < k .  (92) 

Define S ( I )  by 

~ ( f )  = dsum(x(t). Izc-&+I, X'(t)l 

~ ( t )  diag(r(@,-fi)/z, , ! .  , t(@b-pk)/z] 

~ ' ( t )  = diag(t(P*-!41'12, . . , , ~ ( P , - ! 4 ) / z ]  

so that sT)gs(t) = 9. With U'(t) given by (91), but with 

f l m  = P m  f o r j < ~ m < k  

then 

s(f)u'(t)s(t)-1 = U(?) 
i 

and so the assumption in (92) is valid., 
(vii) Let U(t) be a matrix OF the form 

0 0 0 0 H" 

(93) 

(94) 

(95) 

where. in the above, H and H' are arbibary matrices of the same size, say m x m, and H is 
an n x n a rb i t rw  square matrix whose form need not concern us here. More importantly, 
w is the 2 x 2 matrix given by 

! 

w=offd iag( l .  I ) .  (97) 

Let us now define a matrix U'(?) by 
~ 

U'(t) = dsum[H, x ,  H', -x, H") x = diag[ I ,  -1 ) .  (98) 

Define a t- Then (U(t),u,{] is conjugate to [Uy(f).u,fl, as we now demonstrate. 
independent matrix s by 

1 , 0 0 0 0  

0 0 0 0 1 ,  

where 

- 1  1 - 1  I 
b=i( - 1  - 1  ' )  t 2 = ( f  ;) t . = - f (  1 -J 4 = (  l ) .  
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Thus, 6gs = g. and furthermore 

sU'(t)s-l = U(t) 

which is all we require. 
(viii) Let U(r) be of the form [: 0 0 8 w, 8 8 0 wz 8 p, 0 0 8 j  

U(!)= 0 0 0 11 0 0 0 (102) 
o o w ~ o w ' $ o o  
0 11 0 0 0 0 0 
0 0  0 0 0 o v z  

where vl and vz are arbitrary square matrices (of order m x m say), and W, for p = 1, . . . ,4 
are arbitrary square matrices (of order n x n say). With U'@) defined by 

V I 0 0  0 0 0 0  
0 1 1 0  0 0 0 0  

(103) 

0 0 0  0 0 v* 
then it may be shown that there exists a matrix s, which is t-independent and is such that 

bgs = g sU'(t)s-' = U ( t ) .  (104) 

If n is even then 

S =  

and if n is odd we let 

0 - I / d  0 0 0 1/43 
0 0 1 , o o  0 

0 0 0 0 1 . 0  
o -i/& o i/Jz o -i/A O 
0 0 0 0 0 0 1 ,  

S =  

0 0 0 0 0 0  'b. 1/2 0 i/& 0 1/2 0 
0 0 1 , 0 0 0 0  
o i/& o o o -i/Jz o 
0 0 0 0 1 . 0  0 
O 112 O -i/& o 112 O 

\ o  0 0 0 0 0 1, 

which satisfy (104) as required. 
(ix) Let s be some arbitrary non-zero complex number, and consider the mapping 

U(t) H U(st). ( 107) 
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This mapping has the same effect as altering the coefficients Aj in U(t) , which we have seen 
to be arbitrary themselves. Thus, if (U(?), 1,5] and {U'(?), 1, ( 1  are type l a  automorphisms 
then they are conjugate. We may assume then that s = 1. 

(x) The analysis here is similar to that in (vii), and concerns those type l a  automorphisms 
(U@), 1, t} where U(r) is of the form 
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I i" 0" 0" : ") 
U ( t )  = 0 0 v, 0 0 

o x ~ o o o  
o o o o v ~  

where XI = offdiag(t,?}, x2 = d iag{r r l , ? r l ] ,  and V I ,  v~ and vj are arbitrary square 
matrices, with dimensions m, n and m respectively. Note that m is less that e - 1. Define 
U'(t) by the following: 

(10% 
! 

U'([) = dsum(vl, w, v2, -w, v3] 
I 

where w=diag(l, - I )  is 2 x 2. Then there exists a matrix s(r) such that 

G)gs(r) = g s(t/u'(r)s-I = U([) (110) 
~ 

a suitable choice of s(?) being 

0 0 0 0  
S ( f )  = [i 0 ;; 0 1, 1 ; 0 0 

0 0 0  p i m  

5. Study of the conjugacy classes of the type la  involutive automorphisms with U = 1 

This section deals with those involutde automorphisms {U@), 1, tu], where U(t) is given 
by one of (43H50). The previous section explained how various assumptions could be 
made about U@), and we shall make use of that analysis here. 

It is useful to recall briefly the necessary and sufficient conditions for h e  two involutive 
automorphisms {Ul(t), l ,cI) and {Uz3 1 , t 2 )  to be conjugate. If this is the case, then one 
of the following must hold: 

I 

 XI"^(^) = S(t)U2(st)S(t)-l ~ . t ~ U , ( r )  = S(i)U2(d)S(t)-' , (112) 

Clearly, in the above, S(?) must satisfy (18). 
Systematically applying the results~ of section 4 yields a subset of the automorphisms 

that is smaller than that listed in section 3.2, to which all other type la automorphisms with 
N = 1 are conjugate. This subset consists of the automorphisms {U([). 1.51, where U(r) is 
of one of the following two forms: 

~ 

UV) = dsum(lN,, IN. I 11, -IN-, -IN+ 1 (113) 

(114) U(r) = dsum{l,,. offdiag(r, I ,  I -  I 1, - l t - p - ~ ,  I,,} 
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where, in ( I  13), N+ and N -  are non-negative integers such that N+ + N -  = e, and in (1 13) 
p is some non-negative integer that is less than e. ( p  is to be interpreted as a variable, 
being allowed to take integer values from 0 to e - 1.) 

Let us start by looking at the automorphisms [U([), 1.01, where U([) is given by (1 13). 
Clearly there are only ( e  + 1) of these. Let us denote by U; the matrix given by U([) in 
(113) for which N- = j .  What we want to know, of course, is into how many disjoint 
conjugacy classes these automorphisms fall. Quite conveniently, the answer turns out to be 
( a  + I). For, suppose that the following were to hold 

su;s-l = hr 'u; ,  (115) 

Then it can easily be verified that there exists no non-singular matrix S such that (115) 
holds for j # k and so this proves that each of the automorphisms under consideration is 
disjoint from all of the others. That is, the automorphisms [U(t ) ,  1,O) where U(?) is given 
by (1 13) fall into precisely (e + 1) conjugacy classes. We denote the conjugacy classes by 

(A)"', . . . , (A)(') 

and define (A)") for 1 < m < E to contain the automorphism [U;. I ,  01. 
We are thus left with the automorphisms (U(t). 1. e ) ,  where U(t) is of the form (114). 

Clearly there are only e such matrices, and hence such automorphisms. Let us denote by 
U,@) the matrix given by ( I  14) which is such that p = m. It will be shown ultimately that 
each of these automorphisms is disjoint from the others, and also that they are disjoint from 
those that we have just investigated, thus giving us a total of (2e + 1) conjugacy classes 
of type l a  involutive automorphisms with U = 1. 

where 
m # n. This follows from the fact that there exists no non-singular matrix S(t) such that 

S(t)Um(t)S(t)-' = ht@U"(t). (1 16) 

To begin with, we must show that [Um@), I,Cm] is disjoint from {Un, 

(An easy way to check is to try to find such a matrix for the special case t = I, which 
proves to be impossible.) 

Thus we are left with e mutually disjoint automorphisms which may, or may not, belong 
to the conjugacy classes ( A ) G )  for 0 < j < e. As it turns out, they do not belong to these 
classes, although proof of this is not quite straightforward. Prior to actually proving that 
this is the case, it is wise to give a helpful lemma, and its basic proof. 

Lemma 1. Let Ul(t) and Uz(t) be two matrices that are related to each other by 

ht'Ui(~) = R(t)U?(t)R(t)-' (117) 

where R(r) is a Laurent matrix such that 

RT)gR(r) # w a g .  (1 18) 

htpUl( t )  = S(i)U2(r)S(t)-1 (11% 

ST))gS(t) = stag (120) 

Suppose also that there does exist some Laurent matrix S(f) such that 

for some non-zero complex number a. and some integer p. Then 

S(t)  = R(t )Q( t )  (121) 

Q(t)U2(t)Q(t)-' = Uz(r). (122) 

where Q ( t )  is also a Laurent matrix, and is such that 
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Proof. From (119), we have that Sir) = hr'UI(r)S(r)UZ(t)-', and we may substitute 
(117) into this, giving S(r) = R(r)Q(r), where the matrix Q(t) is given by 

~ 

Q(t) = U2(r)R(t)-'S(t)Ui(t)-' . (123) 
I 

It follows, from the properties assumed already, that Q ( r )  is indeed a Laurent matrix, and 
satisfies (122). 
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Now recall that, if [U;, 1,O) belongs to ( A ) ( j )  for some j ,  and if [U;. I .  0) belongs to 
(A)") for j # k then there does not exist any non-singular matrix m such that 

muym-' = AU; ( 124) 

for any non-zero complex number h. If,U,(t) and U,(?) are as defined in (1 13) then consider 
&,(I), which is clearly r-independent and so we may infer from section 4 that there exists 
some r-independent matrix n such that 

nU,(ljn-' = iuf,, (125) 

where U>+] is of the form (1 13). It is then immediately clear that there are precisely two 
possibilities, namely that: 

(1) (U,@), 1 , t )  belongs to the conjugacy class (A)(,+'). or that 
(2) (U,(t). 1, t )  belongs to some conjugacy class disjoint from those that we have identified 

already. 

Using the lemma above, we shall hemonstrate that the second of  these is the one that 

S(r)U;+,S(t)-' = i t g U , ( r )  ( 126) 

, 

holds. We assume, by way of obtaining a contradiction, that we have 

Sy)gS(r) = orrpg. (127) 

Using the notation of the lemma, we state that there exists a matrix R(r )  which is such that 
I 

where the I-] elements in (129) occur' in the 8th and the (l + 1)th places. In fact, such a 
matrix R ( t )  is given by 

R(r) = 0 v(r)  0 (130) i:: :), 
where the submatrices are defined by 

tl = 2-'12diag( 1, i, I ,  i .  . . .) 
t 2  = 2-'/*offdiag(i, - 1, i, -1,. . .) 
tp = 2-'/Zoffdiag(. , . , i, 1, i, 1) 

tj = 2-'"diag(. . . , 1, -1, I ,  -i) 

i.e. alternating 1, i from the corner 

, i.e. alternating i, -1 from the corner 

i.e. alternating i, I from the corner 

i.e. alternating I ,  -i from the corner 

(131) 
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and ~ ( t )  is defined by 

147 

i -1 0 
(132) 

with 1y taking values 1 if is even and i if is odd. Thus, the conditions of the lemma are 
satisfied, and we infer that 

01 

"(I) = 75 (i;l ,ol 01) 

S(t) = R( t )Q( t ) .  (133) 

Here Q ( t )  must be a Laurent matrix, and must also be such that 

Q(t)U;+,Q( t ) - '  = q u i + ] .  (134) 

However. (134) is true only if q = 1, and then Q(r) is of the form: 

Q(t) = (135) 

where the non-zero submatrices in the above are entirely arbitrary and are square. (Here 
Q ( t )  is partitioned by dividing its index set thus: the first m rows/columns, the next 
e -m - 1 rows/columns the next row/column, then the next and the next; the next e -m - 1 
rowslcolumns and finally the last m rowslcolumns.) 

Obviously Q ( t )  is decomposable. and by a suitable re-ordering of its index set could he 
expressed as 

Q ( I ) = ( ~  H O  K )  

with H,K being given by 

Since Q ( t )  is a Laurent matrix, it follows that H and K must themselves be Laurent matrices. 
However, by hypothesis, we have that 

ST)GS(t) = a t s g  (138) 

so that, taking determinants of both sides of the above leads to the necessary condition that 

(det Q(r))'(det R(t))' = ( L Y ~ ~ ) ' ' ~ '  (1 40) 
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which implies that j3 must be even. '(Otherwise, the left-hand side of (140) would be a 
multiple of an even power of I and the right-hand side would be a multiple of an odd power 
of r.) Substituting further, 
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Y 

Q(t)diag[ I , .  . . I I ,  t - I ,  I-', 1.. . . , 1)Q(r) = orrag 

Hdiagll , .  .., 1,r-  1 , 1,. . . , 1]H =crtpoffdiag(l,, .., 1)  

(141) 

which implies in turn, using the general form for Q(r) given in (135), that 
I 

( 142) 

and upon taking determinants of (141), we find the required contradiction, namely that the 
left-hand side is a multiple of an odd power o f f .  whilst the right-hand side is a multiple of 
an even power off. This concludes the work of this section, and together with the conjugacy 
classes (A)"), , . . , (A) (e )  identified earlier, we have thus identified conjugacy classes 

, 

(B)"', . . . , @)([-I) 

with (B)('") being defined to contain the automorphism [Um@), 1, :) 

6. Study of the conjugacy classes of &e type la involutive automorphisms with U = -1 

First we recall that each such automodhism is conjugate to an automorphism (U(r), -I,(], 
where U(f) is given by one of (51)-(58). In fact, we will show in this section that all of the 
type la involutive automorphisms with U = -1 belong to the same conjugacy class, which 
corresponds to (lu+l, 1,O).  We shall call this conjugacy class (C). 

The first stage is to employ the results of section 4 to show that each type l a  involutive 
automorphism with U = - 1  is conjugate to a type l a  automorphism (U, -1,O). where U is 
t-independent, and is given by (51). This dramatically reduces the number of automorphisms 
that have to be considered. We shall now complete this process fully, by showing that all 
of the automorphisms (4, -1.0)  do,^ in fact, belong to the same class. 

Let the quantities p," be defined by 

and define a matrix S ( t )  by 

from which we infer that all of the automorphisms under consideration belong to just one 
conjugacy class. 
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7. Study of the conjugacy classes of the type 2a involutive automorphisms with U = 1 

In this section we are going to investigate the automorphism (U@), 1. (1, where U ( t )  is 
given by one of (59)-(66). We know that every type 2a involutive automorphism with U = 1 
is conjugate to at least one of these. In fact, we can restrict our analysis considerably, by 
using the results of section 4, as we did for the previous section. As in the previous section, 
it follows that every type 2a involutive automorphism with U = 1 is conjugate to one of the 
type 2a involutive automorphisms {U(r), I ,  61, where U(r) is given by (66). 

The similarity with section 6 ends here though, since these automorphisms do not all 
belong to the same conjugacy class. Instead we look at the automorphism (U(t), 1, e ] .  
Here U(t)  is given by 

U(t) = dsum(tl,;, l,,, -I,.. - f in! ,  1, - t - ' lo: ,  -I.., ln+,t-'ln;] (147) 

where the quantities n+ etc are dependent upon the matrix involved, and are integers that 
relate to the various numbers of diagonal entries of U(r) that take the values 1, -1, t and 
t - ' .  For example, if U ( t )  is such that it contains 2b+ 1 diagonal entries + I  then we define 
n+ in this case to be b. Clearly, 

(148) 

If we look at two matrices U l ( t )  and Uz(t )  then to distinguish between the values of n+ 
relating to these matrices we use the expressions n+[Ul(r)l and n+[Uz( t ) l .  

Section 4 demonstrates that each of the automorphisms under consideration are conjugate 
to one of the above. The aim of this section is to show that there are precisely ;(e+ l)(e+Z) 
conjugacy classes of this type, and we shall do this in a number of stages. To begin with, 
we shall show that two automorphism (with associated matrices Ul( t )  and &(t)  of the 
form given in (147) are conjugate if both of the following hold: 

n+ + n; + n- + n'_ = e .  

n+(Ud + n!,.(U,) = n + W  + n!+(Uz) 
(149) 

To demonstrate that this is true, we need only show that it is possible to increase both n: 
and n l  by an arbitrary number, and it suffices to show that they can both be increased by 
I .  Thus, if U(r) is given by (147) and we define S(t)  by 

n;(Ud - nt(Ud = n ! + W  - nt(ud. 

where p = (n; + n+ - 1) and 2 p  + 3 + q = 2.C then 

ST)SS(t) = 9 (151) 

and also 

S(t)U(t)S(t-')-' = U'(?) (152) 

where U'(?) is obtained from U(t )  by setting the (x - 1)th diagonal entry to t ,  the xth 
diagonal entry to - t ,  the (2 + 3 - x)th diagonal entry to t-' and the (E + 2 - x)th 
diagonal entry to -I-', Then, by a simple re-ordering of the index set, we have a matrix of 
the form given by (147), but such that the quantities n; and n'_ have both been increased 
by 1. 
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Moreover, for a given matrix define quantities N+ and N- by 

N+ en: +n+ N- =n'_ + n - .  (153) 

Thus, for a given U(r).  it  follows that the quantity (n: - n t )  can take any one of the values 
-N-, -N-  + 1 , .  . . ,O, . . . , N+ - 1, N+. This means that (n: - n:) can take any one of 
(C + 1) distinct values. The next step in our analysis is to show that we can discount those 
automorphisms [ U @ ) ,  1, f ]  for which (n; - n t )  is less than zero. 

Consider such an automorphism, for which U(?)  may be assumed to be given by 
i 

U ( t ) = d s u m ( l , . - l ~ , - r l m . l .  - t - ' l m , - l k , l , } .  (154) 

Consider U(st). where s may take values 1 or -1. If we pu t s  = -1  in the matrix U ( [ )  then, 
by a suitable re-ordering of the index set (as in section 4), we may infer that [ U ( [ ) .  1. (1 is 
conjugate to some automorphism (V(t ) ,  I ,  [I, where 

( 155) 

We have therefore reduced the original set of automorphisms to a set of (e + I ) @  + 2) /2  
automorphisms. We define matrices U;,&) to be such that 

N+[Ua,b(f)l a n;[Uo,b(t)l = b n\[Uo,b(f)l = 0 .  (156) 

Thus, we have only to consider the automorphisms (Uo.b(f), 1, e], where a runs over all 
integer values from 0 to e ,  and b runs,over all integer values from 0 to a. From what we 
have seen, i t  follows that every type Za automorphism with I I  = 1 is conjugate to one of 
these. It now remains for us to prove that these automorphisms are all disjoint. 

N + [ V ( ~ ) ]  = j + m 'n;[v(t)l- ~L [v (~ ) I  = m . 

Suppose that there exists some S;r) such that the following holds: 

S(t)U,,(sf*)S(t-l)-' = ht"Uo.d(f) (157) 

where we are assuming that c # d. Now there are, of course, two possibilities in the above, 
namely s = 1 and s = -1. Consider the first, and let f take the value -1. The equation 
(157) may then be satisfied only if c = d ,  which is obviously a contradiction, so we must 
haves  = -1. In this case, by putting f = -1 we obtain the necessary condition that c = d. 
which gives the same contradiction. 

Finally, we have to consider the possibility that 
I 

S(f)U,,b(s?*)S(r-')-' 7 hf'uc,d(r) (158) 

where we assume only that a # c. I f ~ s  = 1, then putting f = I in (158) implies that a 
must equal c, which gives a contradict/on. The only remaining possibility is that s = -1. 
However, with s = -1 and f = 1 in ( I%) ,  a necessary condition is that a = c - d,  and 
with s = - 1  and f = -1, a necessary condition is that c = a - b. Since (158) must hold 
for all values of f, it must certainly hr$d for r = 1 and - I  and so both of the following 
hold: 

a = c - d  c = a - , b .  (15% 
~ 

The first of these implies tha! a < c,  and the second that c < a. Thus a = c. which again 
gives a contradiction. 

Let (D)(",h' be the conjugacy class'that contains the automorphism 
~ 

{ u o , b ( f ) j  

where a takes all integer valuts from~O to e ,  and b takes values from 0 to a, for each 
permitted value of a. 
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8. Summary of results 

We conclude by giving an explicit representative for each of the conjugacy classes that we 
identified in the previous sections. To begin with, we note that the conjugacy classes may 
be considered as four 'series', namely 

(1) The conjugacy classes (A)'". . . . , (A) ( t ) .  
(2) The conjugacy classes (B)('), . . . , (B)('- ').  
(3) The conjugacy class (C). 
(4) The conjugacy classes (D)(O,b), where 0 < a  < e and 0 < b <a. 

Consider first the conjugacy class (A)U) ,  where j takes an integer values from 0 to e 
inclusive. We take as a representative of this the automorphism q5 which is specified by the 
following: 

For the conjugacy classes ( B ) ( j )  we take the following automorphisms q5 as representatives: 

@(e+,,) = -eF(d+a,) @(C) = C B(d) = -2(2e - l)h, + (2  - l )C  + d .  

For the conjugacy class (Cl, we take as the representative the automorphism q5 specified 
by: 

Finally, a representative 6 for (D)",*) is defined by 
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b e 
@(c)  = -C @(d)  = 2(2t - 1) x p h ,  + b hap - (2e - 1)bc - d 

p=1: p=btI  

The Lie algebra BI is isomorphic to the Lie algebra A , .  Thus the results of this paper for 
the special caSe P = I should agree with the results of Cornwell [2]. A brief inspection 
reveals that this is so. 
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